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Abstract

This contribution summarizes the results obtained in the problem of orbital degeneracy of the metal ions in exchange coupled and

mixed-valence (MV) clusters. The theory of the double exchange is generalized and the orbitally degenerate systems are considered.

The orbitally dependent double exchange parameter is deduced for the singlet�/triplet and triplet�/triplet transition metal pairs in

three high-symmetric topologies. A new effective Hamiltonian of the magnetic exchange between the ions with unquenched orbital

angular momenta is discussed. The technique of the irreducible tensor operators is applied to the problem of the kinetic exchange in

these kind of metal clusters. Strong magnetic anisotropy is shown to appear in the exchange and MV clusters consisting of orbitally

degenerate ions. The influence of the vibronic pseudo Jahn�/Teller interaction on the degree of the magnetic anisotropy is discussed.

# 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Molecular clusters of exchange coupled ions are

currently important for the design of nanometer size

magnets possessing unusual magnetic properties, in

particular, paramagnetic-like behavior and quantum

tunneling of magnetization [1,2]. They are also in focus

of many areas of research such as solid state chemistry,

magnetism and biochemistry.

The interplay between the electron delocalization

(double exchange) and magnetic interactions crucially

influences the properties of many mixed-valence (MV)

compounds of current interest in solid state materials

science. In the materials with the localized electrons the

exchange interaction is responsible for the magnetic

properties of these systems. Most of the existed models

of the magnetic interactions took into consideration

only orbitally non-degenerate terms of the interacting

ions. Anderson and Hasegawa [3] proposed the theory

of the double exchange and the usually accepted model

for the magnetic exchange in the low-dimensional and

extended materials was based on the Heisenberg�/

Dirac�/Van Vleck (HDVV) model [4]. Recently we

developed the theories of the magnetic exchange [5]

and the double exchange [6,7] (see review article [8]) in

materials containing orbitally degenerate ions in high-

symmetric crystal fields. These orbitally degenerate ions

carry an unquenched orbital angular momenta that give

rise to a strong anisotropy of the exchange interaction in

localized clusters and the anisotropy of the double

exchange in delocalized (MV) clusters. In these view

these systems seem to be of promising interest for the

design of new nanosize magnetic materials. Hereunder

we discuss the main approaches and the role of the

orbital degeneracy in the problem of the exchange in

localized and delocalized clusters paying attention on

the main physical manifestations.
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2. Mixed-valence systems

2.1. Double exchange in degenerate systems

The theory of the double exchange proposed by

Anderson and Hasegawa [3] is essentially based on the

assumption that the ‘extra’ electron moves over non-

degenerate magnetic orbitals and the interacting metal

ions (in both oxidation degrees) are orbitally non-
degenerate (spin systems). The main conclusion of the

theory is that the delocalization of the extra electron

over two spin cores produces a linear spin dependence of

the double exchange splitting resulting thus in the

ferromagnetic ground state of the dimer. The spin-

dependent double exchange parameter is found as [3]:

t(S)�
t

�
S �

1

2

�
2S0 � 1

(1)

where t is the one-electron transfer parameter, S0 is spin

of the core.

As one can see the double exchange parameter

depends on the full spin of the system and independent

of the spin projection quantum numbers. In fact, this

means that in spin systems the double exchange is

magnetically isotropic. In a variety of compounds the

metal ions possess orbitally degenerate ground states in
a high-symmetric crystal surrounding. In this case the

conventional theory of the double exchange proves to be

inapplicable.

The electron transfer (double exchange) Hamiltonian

in the binuclear systems composed from the orbitally

degenerate metal ions can be presented in the following

form:

V�
X
gg0

tgg0
X
s

(a�
gsbg0s�b�

gsag0s)�VAB�VBA (2)

where the operator ags
� creates electron on the orbital g

of site A with spin projection s(�/ or ¡/) and bg?s
annihilates electron on the orbital g? of site B; tgg ?�/

tgAg ?B
�/tg ?BgA

are the one-electron transfer integrals. In

Eq. (2) all relevant transfer pathways are included. We

will consider transfer processes with participation of t2

orbitals, so g; g?�j; h; z(j8yz; h8xz; z8xy) de-
note cubic t2 basis related to C4 axes of the sites. In Refs.

[6,7] the pairs 3T1(t2
2)�/

2T2(t2
1) and 3T1(t2

2)�/
4A2(t2

3) are

considered in three high-symmetric topologies: edge-

shared D2h , corner-shared D4h , and face shared D3h

bioctahedral units. Fig. 1 shows the effective overlap of

the d-orbitals giving rise to the most efficient transfer

pathways. T�/P isomorphism [9] allows us to assign T1(2)

bases to the P -states (L�/1).
Calculation of the matrix of the double exchange

operator in the general case of dn�/dn�1 pair gives the

following result (for the details see our article [6]):
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Here
+ + +

+ + +

 �
are the 6j-symbols,

+ + +

+ + +

+ + +

8<
:

9=
; are

the 9j-symbols. hS̃AL̃AkaA

1
1

2
kS̄AL̄Ai is the reduced matrix

element of the creation operator, the last can be

considered as an irreducible tensor of rank 1 (m,m ?�/

0, �/1, �/1) in the orbital subspace and as that of rank 1/

2 in spin space, tmm? are the transfer parameters in the

angular momentum representation. S̃L̃ are the quantum

numbers for the ground term for dn�1, and S̄L̄ are those

for dn-ions, L̄�1(L̃�1) for orbital triplets and L̄�

Fig. 1. The overlap patterns related to the most efficient transfer

pathways: (a) D2h; (b) D4h; (c) D3h.
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0(L̃�0) for orbital singlets. One can see that the matrix

of the double exchange is diagonal with respect to the

spin quantum numbers S and MS. The matrix element

of the double exchange proves to be proportional to S�/

1/2 (this dependence is contained in the 6j-symbol in Eq.
(3)). As one can see from Eq. (3), the effective double

exchange parameter in the case of orbital degeneracy

can be presented as:

t(SMS; LML 0 SMS; L?M?L)

�
X
mm?

(all transfer pathways)

tmm?f (LML; L?M?L)
(S � 1=2)

2S0 � 1
(4)

In Eq. (4) the double exchange parameter for orbitally

degenerate dimers linearly depends on S and is inde-

pendent of the spin projections MS just as in the
Anderson�/Hasegawa theory, Eq. (1). In the case of

orbitally degenerate systems the double exchange para-

meter depends on the orbital quantum numbers L , L ?,
ML, M ?L. This dependence reflects the magnetic aniso-

tropy of the orbital subsystem and as a consequence the

anisotropy of the system as a whole. As distinguished

from the anisotropic contribution that appears like a

small corrections to the isotropic terms in spin-systems,

the anisotropy in degenerate systems appears as main

effect of the orbitally dependent double exchange. For
this reason we proposed [6] to refer this kind of the

double exchange to as ‘anisotropic double exchange’.

Character of the anisotropy is closely related to the set

of the relevant transfer integrals in Eqs. (3) and (4),

reflecting both the point symmetry of the dimer and the

specific choice of physically significant transfer path-

ways. Strong magnetic anisotropy of the double ex-

change is to be considered as the main physical
consequence of the orbital degeneracy.

Fig. 2 shows the energy splitting for a singlet�/triplet

pair 3T1(t2
2)�/

4A2(t2
3) with different overall symmetries.

Providing D2h, D3h symmetries (Fig. 2(a)) the energy

pattern involves three pairs (signs �/ and �/) of levels

with S�/1/2, 3/2, 5/2; the energies are 9/1/3t ?(S�/1/2).

All these levels correspond to ML�/0. The spectrum

contains also one highly degenerate level at E�/0. This
level comprises states with all S values, each belonging

to ML�/9/1. In the case of D4h symmetry (Fig. 2(b)) we

find the reverse situation. The state with E�/0 involves

all S -values and corresponds to ML�/0, while all the

states with the energies 9/1/3t (S�/1/2) possess ML�/

9/1. One can see that the D4h system exhibit strong

magnetic anisotropy with the C4 easy axis of magnetiza-

tion meanwhile D2h, D3h systems are also anisotropic
but possess only Van Vleck-type paramagnetism in the

ground state. More complicated cases of the ‘anisotropic

double exchange’ are considered in Ref. [6], special

symmetry properties of the double exchange in the

general case (when all relevant transfer pathways are

taken into consideration) are revealed in Ref. [7].

2.2. Vibronic model

The vibronic interaction in MV compounds is usually

important and the manifestations of the mixed valency

are closely related to the strength of the vibronic

coupling. In order to illustrate (at least at the qualitative
level) the main effects of the vibronic coupling we will

use the vibronic model dealing with the local breathing

modes (PKS model [10], see review paper [8]) and

including also intercenter (stretching) vibrations as

proposed by Piepho [11]. Such-type vibronic model

was used in our paper [12] to study the adiabatic

potentials and localization�/delocalization effects in

spin-dimers. We leave outside of our discussion the
role of the local Jahn�/Teller vibrations, this problem

will be discussed elsewhere.

In order to inspect the role of vibronic effects in the

context of the magnetic properties we will restrict

ourselves by the most simple case of a singlet�/triplet

pair. Let us denote the coordinate of out-of-phase PKS

vibration as q and that for the intercenter vibration as

Q . PKS interaction mixes the states with the same
quantum numbers S , MS, ML and opposite parity

leading thus to the pseudo Jahn�/Teller effect. On the

other side the interaction with Q -mode is diagonal in

Fig. 2. Energy diagram for 3T1(t2
2)�/

4A2(t2
3) MV dimers: (a) D2h, D3h;

and (b) D4h. A short notation j9; S;MsL�1;MLi�jS; MLi is used.
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jp; S; MLi basis. In fact, this interaction leads to the

modulation of transfer integrals t and t ? due to the

changes of the metal�/metal distances (see [8]). The S ,

ML-block of the matrix of the vibronic Hamiltonian
involving the interactions with the dimensionless q and

Q vibrations can be presented as:

D2h:Vev(S; ML)�
nffiffiffi
2

p qsX�
l

3
(1� jMLj)

�
S�

1

2

�
QsZ;

D4h:Vev(S; ML)�
nffiffiffi
2

p qsX�
l

3
jMLj

�
S�

1

2

�
QsZ (5)

where sX and sZ are the Pauli matrices defined in the
basis j�; S; MLi; j�; S; MLi; n and l are the vibro-

nic coupling parameters. The adiabatic surfaces are

given by:

D2h: U
S;ML

9 (q; Q)

�
1

2
(vq2�VQ2)

9

�
1

9
(t�lQ)2(1� jMLj)

�
S�

1

2

�2

�
1

2
n2q2

�1=2

;

D4h: U
S;ML
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�
1

2
(vq2�VQ2)

9

�
1

9
(t�lQ)2(jMLj)

�
S�

1

2

�2

�
1

2
n2q2

�1=2

(6)

where v and V are the frequencies of q and Q modes,

respectively. For both considered topologies the energy

pattern contains highly degenerate level o�/0 compris-

ing all S states with ML�/9/1 for D2h and ML�/0 for

D4h. These levels give rise to the intersected paraboloids

shifted along q axis to the points9n=v
ffiffiffi
2

p
(Q�0): The

remaining surfaces belong to the definite S and their

shapes are quite similar to those studied in details in our

recent paper [12] dealing with the spin-systems. Let us

summarize the main features of these adiabatic surfaces

responsible for the magnetic behavior of the system.

Providing strong PKS coupling n2/2v�/(l2/9V)(S�/1/

2)2 and comparatively weak transfer (t /3)(S�/1/2)B/(n2/
2v )�/(l2/9V)(S�/1/2)2 we are dealing with the double-

well surface so that in each minimum the excess electron

is localized. In the case of strong PKS coupling and

strong transfer (t /3)(S�/1/2)B/(n2/2v )�/(l2/9V)(S�/1/

2)2 the surface possesses the only minimum with shifted

Q and the excess electron is fully delocalized. Finally, in

the case of weak PKS coupling n2/2vB/(l2/9V)(S�/1/2)2

the system is fully delocalized independently of the rate
of transfer.

The vibronic interaction (pseudo Jahn�/Teller effect

[13�/15]) in MV compounds is usually strong. In order to

illustrate (at least qualitatively) the influence of the

vibronic interaction we employ the PKS model dealing

with the out-of-phase mode q . The main effect of the

vibronic interaction is illustrated in Fig. 3 where the
adiabatic potentials of a singlet�/triplet pair
3T1(t2

2)�/
4A2(t2

3) are depicted. The vibronic interaction

is operative within the sets of states with a given full spin

S , Fig. 3 shows selected S�/5/2 group of levels. One can

see that the gap 2t between the levels with S�/5/2,

ML�/0 and S�/5/2, jMLj�/1 is strongly reduced in a

deep minima of the lower sheet of the adiabatic

potential. In the limit of strong pseudo Jahn�/Teller
coupling one can see that the states with ML�/0 and

jMLj�/ 1 become degenerate so that the electronic wave-

function in the minimum point can be identified with 6P

term of a spherically symmetric system. Thus the

vibronic effect of the localization of the extra electron

is accompanied by the reduction of the anisotropy

induced by the double exchange in the orbitally degen-

erate system.

3. Magnetic exchange in the systems with unquenched

orbital angular momenta

In the case of orbital degeneracy of the constituent

ions, the isotropic spin-Hamiltonian of the magnetic
exchange HDVV model becomes invalid even as a

zeroth order approximation. In our recent papers [5]

Fig. 3. Suppression of the magnetic anisotropy by PKS vibration:

illustration for a singlet�/triplet pair in the D4h system.
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we proposed a new approach to the problem of the

kinetic exchange between orbitally degenerate many-

electron transition metal ions. Our consideration takes

into account explicitly complex energy spectrum of

charge transfer crystal field states exhibited by the

Tanabe�/Sugano diagrams. Taking advantage from the

symmetry arguments we have deduced the effective

exchange Hamiltonian in its general form for an

arbitrary overall symmetry of the dimer taking into

account all relevant electron transfer pathways. The

effective Hamiltonian was constructed in terms of spin-

operators and standard orbital operators (cubic irredu-

cible tensors). All parameters of the Hamiltonian

incorporate physical characteristics of the magnetic

ions in their crystal surroundings. In fact, they are

expressed in terms of the relevant (in a given overall

symmetry) transfer integrals and crystal field and Racah

parameters for the constituent ions.

Along with the isotropic spin�/spin interactions the

effective Hamiltonian in the case of orbital degeneracy

contains terms like OGAgA
OGBgB

(orbital matrices) and

mixed terms like SASBOGAgA
OGBgB

containing both types

of operators. All these operators can be expressed in

terms of the irreducible tensor operators acting in the

orbital and spin subspaces. Then the effective Hamilto-

nian can be represented as linear combination of the

irreducible products. The last step of the mathematical

procedure involves decoupling of these products and the

calculation of the eigenvectors and energy levels. Along

with the orbitally dependent kinetic exchange the main

factors controlling the magnetic anisotropy have been

also studied in details: local low symmetry crystal fields,

spin�/orbit coupling, Coulomb interactions between

unfilled shells.

The results can be illustrated by the application of the

developed approach to the binuclear unit [Ti2Cl9]�3 in

Cs3Ti2Cl9 that represents a face-shared 2T2�/
2T2 cluster

with D3h overall symmetry. Fig. 2c shows the most

important electron transfer pathway ta. The energy

levels are obtained as the functions of the ratio te/ta,

where te is associated with the e-orbitals in the trigonal

symmetry. The model takes into account also local

trigonal crystal field (parameter D) and also spin�/

orbital coupling. Fig. 4 shows that the calculated

magnetic susceptibility is in a good agreement with the

experimental data [16]. In the agreement with the

experimental data the system exhibits the magnetic

anisotropy arising from the orbitally dependent ex-

change interaction.

4. Supplementary material

The material is available from the authors on request.

Acknowledgements

Financial support from the European Network on

Molecular Nanomagnets, INTAS (Project 2000-0651),

the Spanish Ministerio de Ciencia y Tecnologı́a (Grant

MAT 2001-3507), the Generalidad Valenciana (Grant

GV01-312) and the Supreme Council on Science and

Technological Development of Moldova (Grant N111)
is highly appreciated. A.V.P. thanks NATO Scientific

Committee whose financial support made possible his

stay at the University of Valencia. B.S.Ts. thanks the

Spanish Ministerio de Educación, Cultura y Deporte for

a visiting Professor grant. J.M.C-J. thanks the Spanish

Ministerio de Ciencia y Tecnologı́a for a RyC contract.

References

[1] D. Gatteschi, A. Caneschi, L. Pardi, R. Sessoli, Science 265 (1994)

104.

[2] R. Sessoli, D. Gatteschi, A. Caneschi, M. Novaik, Nature 365

(1993) 141.

[3] P.W. Anderson, H. Hasegawa, Phys. Rev. 100 (1955) 675.

[4] O. Kahn, Molecular Magnetism, VCH, 1993.

[5] (a) J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, J. Phys. Chem. 102 (1998) 200;

(b) J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, J. Chem. Phys. 114 (2001) 1148;

(c) J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, Chem. Phys. 274 (2001) 131;

(d) J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, Chem. Phys. 274 (2001) 145;

(e) J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, J. Solid State Chem. 159 (2001) 280.

[6] J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, Chem. Phys. 254 (2000) 275.

[7] A.V. Palii, Phys. Lett. A 295 (2002) 147.

Fig. 4. Magnetic behavior of the [Ti2Cl2]�3 unit: comparison with the

theoretical curve (solid line) calculated at te/ta�/�/0.154, ta�/52028

cm�1, D�/�/320 cm�1, l�/155 cm�1 and orbital reduction k�/0.71.

J.J. Borrás-Almenar et al. / Polyhedron 22 (2003) 2521�/2526 2525



[8] J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, A.V.

Palii, B.S. Tsukerblat, Magnetic properties of mixed-valence

systems: theoretical approaches and applications, in: J. Miller,

M. Drillon (Eds.), Magnetoscience*/From Molecules to Materi-

als, Willey-VCH, 2001, pp. 155�/210.

[9] A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of

Transition Ions, Clarendon Press, Oxford, 1970.

[10] K.Y. Wong, P.N. Schatz, Prog. Inorg. Chem. 28 (1981)

369.

[11] (a) S.B. Piepho, J. Am. Chem. Soc. 110 (1988) 6319;

(b) S.B. Piepho, J. Am. Chem. Soc. 112 (1990) 4197.

[12] J.J. Borras-Almenar, J.M. Clemente-Juan, E. Coronado, S.M.

Ostrovsky, A.V. Palii, B.S. Tsukerblat, Chem. Phys. 240 (1999)

14.

[13] R. Englman, The Jahn�/Teller Effect in Molecules and Crystals,

Wiley, London, 1972.

[14] I.B. Bersuker, V.Z. Polinger, Vibronic Interactions in Molecules

and Crystals, Springer, Berlin 1989, Chem. Rev. 101(2001) 1067.

[15] B.S. Tsukerblat, Group Theory in Chemistry and Spectroscopy,

Academic Press, London, 1994.

[16] B. Briat, O. Kahn, I. Morgenstern-Badarau, J.C. Rivoal, Inorg.

Chem. 20 (1981) 4193.

J.J. Borrás-Almenar et al. / Polyhedron 22 (2003) 2521�/25262526


	Problem of the magnetic anisotropy in orbitally degenerate exchange and mixed-valence clusters
	Introduction
	Mixed-valence systems
	Double exchange in degenerate systems
	Vibronic model

	Magnetic exchange in the systems with unquenched orbital angular momenta
	Supplementary material
	Acknowledgements
	References


